Distribution and Deviation of Shear Test Results of Thermally Sprayed Coatings
S. Hartmann, OBZ Dresel & Grasme GmbH, Bad Krozingen, Germany
F. Deuehrler, Safety Engineering / Material Science, University of Wuppertal, Germany
R. Winkler, SLV Duisburg, NL der GSI mbH, Germany

Aims
- Comparison of characteristics of the shear test to the tensile adhesive test
- Determination of the best statistical description of shear test results for different coating materials
- Investigation of deviation in a shear test series

Experiments

Shear Test in accordance with DIN EN 15.340

- **Shear Test for thermally sprayed Coatings**
 - Key:
 - Hard coating
 - Semi hard coating
 - Soft coating
 - Adhesive

Typical Characteristics:
- Influence on the test results by:
 - Load
 - Exact hardening of the adhesive
 - Inadequate adhesive cohesion

Shear Load Resistance
- Simple and fast application of the test
- Low investments
- Few specimens necessary
- Influence on the test results by the adhesive possible

Results

- **Test series 316L**
 - 60 specimens
 - Mode of fracture 1

Test series 316L HVOF

- EDX – analysis
- SEM
- Coating removed completely
- Remains of the coating on the surface

Conclusions
- The shear test properties of thermal sprayed 316L are better described by Weibull statistic than by normal distribution
- Further work is necessary to evaluate if the shear test values of other thermal spraying materials can be described by the Weibull distribution
- The deviation of shear test values in comparison to the tensile adhesive test in accordance with DIN EN 582 has to be investigated